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Dense square-symmetry tilings of the plane by equilateral triangles and squares

are described. Repeated substitution of a vertex of a tiling by groups of vertices

leads asymptotically to a limiting density that is independent of the starting

pattern and to a family of quasicrystalline patterns with 12-fold symmetry.

Diffraction patterns were computed by treating the vertices as point scatterers.

As the number of substitutions increases, and as the unit-cell size increases, the

diffraction patterns from a single unit cell develop a near-perfect 12-fold

symmetry. In addition, the low-intensity background scattering in the diffraction

patterns exhibits fractal-like self-similar properties, with motifs of local intensity

recursively decorating the more intense features as the number of substitutions

progresses.

In a review (O’Keeffe & Hyde, 1980) of 2-periodic nets rele-

vant to crystal chemistry, it was remarked of a certain net that

‘ . . . this is the densest net with square symmetry that we have

discovered’. ‘Densest’ refers to the structure considered as a

packing of equal circles and density is measured as the number

of unit-diameter circles per unit area. The fraction of the plane

covered by these circles is this density multiplied by �/4. Here

we describe a series of denser circle packings with square

symmetry. These patterns also correspond to tiling the plane

by squares and equilateral triangles.

The simplest square packing of equal circles has circle

centers on a 44 net and has density 1.0, but a denser one with

all circles related by symmetry has centers on a 32.4.3.4 net

(Fig. 1); this latter has density 4/(2 +
ffiffiffi
3
p

) = 1.07180.

The structure referred to by O’Keeffe & Hyde (1980) is

obtained by replacing each circle of a 44 packing by a group of

19 circles with centers on, or inside, a dodecagon as shown in

Fig. 1(c) to produce the packing suv shown in Fig. 2. To

maintain square symmetry it can only be done in the way

shown in the figure and the symmetry is now p4gm. This

packing has density 15/(7 + 4
ffiffiffi
3
p

) = 1.07695. But it is clear that

the same operation carried out on a 32.4.3.4 packing will

produce a denser structure, again with symmetry p4gm. There

are two ways of doing this and the resultant patterns are

symbolized esq and esr. These have density 56/(26 + 15
ffiffiffi
3
p

) =

1.07732. The nets of these three structures may be found in the

RCSR database at http://rcsr.anu.edu.au (O’Keeffe et al.,

2008). That source will provide coordinates and other crys-

tallographic data.

However, there is no reason to stop at this point. Individual

circles of the sphere packings of Fig. 2 can be again replaced

by the 19-circle motif in a way that preserves the symmetry,

and this substitution tiling process repeated ad infinitum. The

density of the structures is determined by counting squares

and triangles. If at the nth iteration there are tn triangles and sn

squares, then at the next iteration

tnþ1 ¼ 7tn þ 16sn;

snþ1 ¼ 3tn þ 7sn:
ð1Þ

Each square of unit area is associated with one vertex (or

equivalently, four 1/4-vertices at each corner), and each

Figure 1
(a) The centers of a circle packing based on 44. (b) The centers of a circle
packing based on 32.4.3.4. (c) Circle centers of a dodecagonal unit of 19
circles.

Figure 2
From left: suv, the pattern derived by replacing the centers of a 44 circle
packing by the units of Fig. 1(c). esq and esr, two square-symmetry
patterns derived by replacing the centers of a 32.4.3.4 circle packing by the
units of Fig. 1(c). A unit cell is outlined in every case.



triangle of area
ffiffiffi
3
p

/4 is associated with half of a vertex (three

1/6-vertices).

The density �n (number of vertices per unit area), after

iteration n, is then

�n ¼
sn þ tn=2

sn þ
ffiffiffi
3
p

tn=4
¼

1þ tn=2sn

1þ
ffiffiffi
3
p

tn=4sn

: ð2Þ

The density therefore depends on the ratio tn=sn. For any

positive and finite starting value of t1 and s1, the ratio

converges rapidly so that in the limit of infinite n, tn+1 /sn+1 =

tn /sn = t1 /s1 = 4/
ffiffiffi
3
p

. This ratio is confirmed by examining the

eigenvectors of the generating matrix (1) in the limit n!1.

When this is done, a second solution is found, t1 /s1 = �4/
ffiffiffi
3
p

.

Taking the positive solution, we find that the limiting density

�1 tends to the same finite value regardless of the starting

configuration,

�1 ¼ 1=2þ 1=
p

3 ¼ 1:07735 . . . : ð3Þ

This is exactly the average of the densities of 44 and 36 (the

densest circle packing). The second, negative, solution gives an

infinite density for all starting configurations, and does not

correspond to a physically meaningful tiling.

The two eigenvalues of the substitution matrix in (1) are

ð2�
ffiffiffi
3
p
Þ

2, the larger value corresponding to the scaling of the

growing structure. Thus, after each substitution step, the

number of vertices per unit cell grows by a factor ð2þ
ffiffiffi
3
p
Þ

2
’

13.928, and the unit-cell edge lengthens by a factor 2þ
ffiffiffi
3
p
’

3.7320. The smaller eigenvalue, ð2�
ffiffiffi
3
p
Þ

2
’ 0.07180, suggests

a shrinking structure and, as pointed out above, does not

correspond to a physically meaningful tiling.

There are infinitely many circle packings with square

symmetry and with the circle centers at the vertices of a tiling

of the plane by equilateral triangles and squares and, as

explained below, infinitely many different circle packings with

this limiting density. It is clear, however, that there are denser

square circle packings. For example, one may take an arbi-

trarily large fragment of 36, with close to square shape, and

repeat those about a point with p4 symmetry. In the limit

of very large fragments the density will approach that of 36,

although the ‘grain boundaries’ between the four fragments

of 36 will inevitably be incommensurate non-close-packed

structures. However, if we restrict the discussion to edge-to-

edge tilings by equal-sided squares and equilateral triangles,

we suspect that the structures we describe are the densest with

square symmetry.

It must be mentioned that our ‘inflation rule’ of replacing a

vertex by a set of 19 vertices has been used earlier in different

deterministic contexts by Stampfli (1986) and by Schlottmann

(as described by Hermisson et al., 1997; see also Zeng &

Ungar, 2006). The density of squares and triangles for such an

inflated structure was earlier derived by Leung et al. (1988).1

We have investigated iterations of esq in some detail. There

are two ways of replacing a vertex with a cluster of vertices

(the two ways are related by a 30� rotation). The esq pattern

has nine kinds of vertex and a total of 56 in the unit cell so

there are 29 = 512 ways of producing the next generation while

maintaining square symmetry, and 256 ways ignoring

symmetry. We took just one of the 512 square patterns as esq2;

from this we took arbitrarily one new square pattern esq3 (Fig.

3) and from that one square pattern to form esq4. At this point

there are 19003 kinds of vertex and 219003
’ 104720 ways of

making esq5. This is still an almost vanishingly small fraction

of the 2151316
’ 1045551 ways of making the next generation

regardless of symmetry, so the square-symmetry patterns are

special. The patterns can be viewed in two ways. We can

consider the periodic (p4gm) patterns as successive approx-

imants to a quasiperiodic structure, or we can consider the unit

cell itself as an increasingly large finite fragment of a quasi-

periodic structure. We consider the latter.

Diffraction patterns can be calculated in the usual way by

summing over all the pairwise interference terms between

scatterers in the unit cell, which here are located at the vertices

of the tiling. Although there is no periodicity within the unit

cell, the location of all of the scatterers is well defined.

For simplicity, we start with a primitive initial cell that

contains one copy of our substitution pattern. The Fraunhofer

diffracted wavefunction is simply

 ðQÞ ¼
PN
m¼1

fmðQÞ expð�iQ � rmÞ ð4Þ

where fmðQÞ is the atomic scattering factor at wavevector Q.

The sum is over the atoms in the unit cell, which in this

instance are the N atoms in the substitution pattern.

Now we substitute each of these vertices with a new copy of

the substitution pattern. To accomplish this we must first

expand the model by a factor s (in our case, s = 2þ
ffiffiffi
3
p

), then

we replace each vertex with a copy of the substitution pattern.

It may be necessary to rotate the pattern relative to the

original orientation of the set of coordinates frmg. This is

achieved by applying a rotation operation R before substi-

tuting. In our case any angle that is a multiple of 30� in the

plane is allowed (0� and 30� generate different structures).

Thus, the new coordinate set is generated by

frm0 g �
PN
m¼1

�
srm þ

PN
n¼1

Rrn

�
: ð5Þ
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Figure 3
Section taken from the unit cell of esq3, showing the fourfold rotation
axis at the center, but the absence of translational symmetry within the
unit cell.

1 We are grateful to a referee for calling our attention to this work, of which we
were unaware at the time the present work was completed.



The diffracted wavefunction after this expansion/decoration

step is now

 Qð Þ ¼
PN
m¼1

exp �is Q � rmð Þ
PN
n¼1

wn fn Qð Þ exp �iQ � Rrnð Þ: ð6Þ

The weighting (or occupancy) factor wn accounts for the

situation in which multiple degenerate copies of the same

scatterer are generated at a particular location rn . A second

substitution expands the set of coordinates to

frm0 g �
PN
m¼1

�
s2rm þ

PN
�¼1

�
sRrm þ

PN
q¼1

R2 rq

��
ð7Þ

and the diffracted wavefunction is now

 ðQÞ ¼
PN
m¼1

expð�is2Q � rmÞ �
PN
n¼1

wn fnðQÞ expð�isQ � RrnÞ

�
PN
q¼1

wq fqðQÞ expð�iQ � R2rqÞ: ð8Þ

If this expansion/convolution is repeated, the Fraunhofer

diffracted wavefunction  MðQÞ after the Mth generation can

be expressed as the product

 MðQÞ ¼
QM
p¼1

’pðQÞ; ð9Þ

where

’pðQÞ ¼
PN
m¼1

F ð pMÞ
m exp �isM�p Q � Rp�1rm

� �
: ð10Þ

Since the rotation of points in space is equivalent to a

contravariant rotation of the reciprocal-lattice vector by the

transpose of R, that is eRR, we can rewrite ’pðQÞ as

’pðQÞ ¼
PN
m¼1

F ð pMÞ
m exp

�
� i
�
sM�peRR1�p

Q
�
� rm

�
: ð11Þ

This form shows that we can interpret the expansion and

rotation of coordinates in real space at each generation step,

as a shrinking and contrarotation of the reciprocal-lattice

vectors Q in reciprocal space relative to the vectors at the

previous step. Thus, each generation potentially produces a

fractal-like self-similar contribution to the diffraction pattern.

The scattering factor F ð pMÞ
m is unity for all terms except the

final generation p = M when the iterative generation of points

is ended and the scatterers themselves are finally realised.

Thus

F ð pMÞ
m ¼

(
1 if p 6¼ M;
wm fmðQÞ if p ¼ M:

ð12Þ

As before, the weighting (or occupancy) factor wm

compensates for degenerate copies of the same scatterer at

location rm .

The above analysis leads us to expect diffraction patterns

with fractal-like self-similar properties. In practice, the appli-

cation of equations to compute the diffraction pattern

is cumbersome. Since it is straightforward to compute the

coordinates of all the scatterers in the unit cell at each

generation, we computed the Fraunhofer diffracted wavefield

 MðQÞ directly by explicitly calculating the interference terms

for the whole cell after the Mth generation. The diffracted

intensity is then j MðQÞj
2.

The diffracted intensity from a single unit cell of the esq

structure (Fig. 4a), which contains 112 vertices, shows well

defined peaks with an apparent 12-fold symmetry. Close

inspection of the weak background scattering shows that the

12-fold symmetry is not perfect, and that the true symmetry is

fourfold. The diffraction pattern from the infinite lattice (not

shown) is markedly different, exhibiting a clear fourfold axis

consistent with space group p4gm for the unit-cell dimensions

of esq. The pattern from a single unit cell (Fig. 4a) is the form

factor that is applied to the pattern from the primitive lattice.

The structure arising from the second generation, here

referred to as esq2, contains 780 atoms. Its diffraction pattern

(Fig. 4b) develops sharper peaks and already has a near-

perfect 12-fold symmetry. The sharp peaks occur at non-

integer reciprocal-lattice vectors. The reciprocal-lattice

vectors of the periodic versions of these structures shrink in

magnitude by the factor 2þ
ffiffiffi
3
p

with each generation. Since

we are examining the form factors for the scattering from a

single unit cell, we label the peaks in terms of reciprocal edge

units (nearest-neighbor inter-vertex distance). The peak

labeled pq in Fig. 4b is located at approximately (1.5, 1.5)

reciprocal edge. Again, the 12-fold symmetry exhibited by the

intense sharp peaks is violated in subtle ways by the back-

ground intensity. The patterns for the next three generations,

esq3 (Fig. 4c), esq4 (Fig. 4d) and esq5 (Fig. 4e), closely

resemble that for esq2. The most intense peaks in these

patterns can be seen in Fig. 4( f), which is the same pattern as

Fig. 4(c) for esq4, but with the intensity scale reduced by three

orders of magnitude.

The numbers of vertices in each unit cell after each

generation are 10 864, 151 316 and 2 888 456, respectively.

Although there is no obvious relationship between the

strongly diffracted intensity and density of the structure, when

the intensity scale is increased so that some of the background

intensity is visible (as shown in Figs. 4c–4e) subtle differences

appear.

These differences can be seen in Fig. 5, which shows the

intensity region in the neighborhood of the p, q ’ (1.5, 1.5)

peak. The pattern for esq3 (Fig. 5b) is displayed at the same

reciprocal-lattice scale as for esq2 (Fig. 5a). Already self-

similar features are appearing. In the upper left of the esq3

pattern a sharp spot emerges that is a smaller, but strikingly

similar, version of the pattern at pq for esq2. Even more

striking is when we generate the esq4 pattern (Fig. 5c) we see

that there is a near-perfect copy of the esq3 pattern decorating

the same pq spot, but shrunk by the factor s = 2þ
ffiffiffi
3
p
’

3.732051 . . . . To emphasize the similarity, Fig. 5(d) shows the

esq4 pattern expanded by this factor. Comparison with the

esq3 pattern in Fig. 5(b) emphasizes the similarity. The main

reason why the patterns are not perfectly self-similar is

because the intensity of the sharp spots grows approximately

as the square of the number of vertices, that is as	s4, whereas

the intensity of each new manifestation of the motif grows in
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proportion to the number of vertices, or 	s2. Consequently,

the shoulders of the bright peaks eventually dominate the

background scattering.

With each generation, the pattern from each single unit cell

better approximates perfect 12-fold symmetry. Also the sharp

spots occur near irrational pq values.

The patterns are very similar for the esr sequence of

structures. The pattern for esr4 (Fig. 4g) is superficially iden-

tical to that for esq4 (Fig. 4d). However, the background

intensities show subtle differences. The diffraction pattern for

a fourth-generation structure, ran4, built by randomly

orienting the 19-atom motif by 0� or 30� before placing in

position, is substantially different from the ordered patterns

(Fig. 4h). Strong diffuse background intensity is generated,

and none of the fractal-like behavior emerges. Strictly, the

label ran does not refer to a unique structure, but instead

represents a vast family of possible structures, of which we

examine just one. However, all random conformations with

approximately half of the motifs rotated should give similar

strong features in the diffraction patterns. The differences will

only appear in the subtle details of the diffuse scattering.

Each generation expands the unit-cell size by 	s ’ 3.732,

and the number of vertices per unit cell increases by a factor

	s2
’ 13.93. After four additional generations applied to the

research papers
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Figure 5
Detailed views of the Fourier transforms of (a) esq2, (b) esq3 and (c) esq4
circle packings, centered at the reciprocal-lattice point pq near (1.5,
�1.5) eu�1 as indicated in Fig. 4(b). (d) The central region of (c)
magnified by a factor of 2 +

ffiffiffi
3
p

= 3.73205, and at the same intensity
scaling, showing the strong similarities to the pattern from the previous
iteration, shown above it in (b). The intensities in (b) and (c) have each
been scaled down successively by a factor (2 +

ffiffiffi
3
p

)2 = 13.93 relative to (a).
Comparison of (b) and (d) suggests that the intensity of the fractal
decoration grows linearly with the number of atoms, whereas the intensity
of the sharp peaks, once they have appeared, subsequently grows
superlinearly, approaching the square of the number of atoms.

Figure 4
(a)–(e) Kinematical diffraction intensities from a single unit cell of five
generations based on the esq structure. The scale marker in (a) is the
same for all patterns and is in reciprocal edge units (eu�1). The indices in
(a) are relative to the unit cell. The sharp peaks labeled pq in (b) are
centered at irrational indices near (1.5, 1.5) eu�1. The intensity
surrounding each pq peak becomes more elaborate with each generation
exhibiting some self-similar features. As the generation number increases,
the pattern approaches perfect 12-fold rotation symmetry. ( f ) The
diffraction pattern for esq4 (as in d), but with the intensity scale
decreased by three orders of magnitude so that only the most
intense peaks appear. (g) The equivalent diffraction intensity
for the fourth generation of the esr variant, esr4. It closely resembles
esq4. (h) The equivalent diffraction intensity for the fourth generation of
the randomized tiling ran4. There is a significant increase in diffuse
intensity compared with esq4 and esr4. The symmetry is reduced to
fourfold.



esq net, there are almost three million vertices. After about 20

generations, a (plane) unit cell with approximately one mole

of vertices will be generated. For all practical purposes, such a

single cell approximates an infinite structure. In this limit, our

nets constitute space-filling aperiodic tilings of squares and

equilateral triangles. In common with quasicrystals (Gähler &

Klitzing, 1997), the diffraction patterns exhibit sharp spots

with irrational pq indices and have rotational symmetry that is

not supported by periodic plane groups. In our case, we have

12-fold symmetric diffraction patterns, with pq indices

governed by the irrational number 2þ
ffiffiffi
3
p

(Janssen et al.,

2007). Penrose tilings have fivefold rotation symmetry and

have diffraction patterns with sharp peaks whose indices are

governed by the number 2þ
ffiffiffi
5
p

, which is twice the golden

mean. In this sense, our tilings of squares and equilateral

triangles, built by recursive isomorphic substitutions of a

simple motif, constitute a simple type of quasiperiodic space-

filling plane structure with interesting diffraction patterns with

fractal-like properties.

Square–triangle tilings provide a basis for systematic

description of the structures of some Frank–Kasper inter-

metallic phases (Frank & Kasper, 1959; Sullivan, 2000). Thus

44 corresponds to the cubic A15 structure, 36 to the hexagonal

Z structure and 32.4.3.4 to the tetragonal �-phase structure. In

these structures space is divided into tetrahedra (‘tetra-

hedrally close packed’). The dual structures are simple tilings

and are those of the well known types I, III and IV clathrate

structures, respectively. Interestingly these occur in a number

of contexts in soft matter. Of particular interest in connection

with this work is that related dodecagonal quasicrystals based

on square–triangle tilings have recently been found in supra-

molecular liquid crystals (Ungar & Zeng, 2005), in ABC star

(tri-block) polymers (Hayashida et al., 2007) and in colloidal

assemblies of inorganic nanoparticles (Talapin et al., 2009).
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